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1.0 INTRODUCTION

Rolling element bearings have a DN (Diameter in mm X Speed in rpm) limit of
approximately 2-2.5 X 10 8 and require lubrication to achieve a reasonable operational

life. Fluid film bearings do not have a DN limit and offer life and speed characteristics

which are unachievable with rolling element bearing technology. In order to unlock

the potential of fluid film bearings for cryogenic turbomachinery applications, research

is required to define their characteristics in the cryogenic environment. This research

should include materials evaluation, steady-state performance, and rotordynamic
coefficients.

The determination of rotordynamic coefficients is important for the development

of new bearing technologies, validation of analytical models, and the application of
bearing technology to high speed rotating machinery. While fluid film bearings hold

great potential for long life, low cost, and reliable operation, there is a general dearth

of experimental data for their rotordynamic performance. This is especially true of foil

bearings and other bearings operating in cryogens.

This report documents the results of a study to define the conceptual design

of a test apparatus and associated facility for the identification of rotordynamic

coefficients of fluid film bearings in a cryogenic environment.

1.1 ROTORDYNAMIC COEFFICIENTS

Historically, for rotordynamics, bearing testing has had the objective of

determining the coefficients in the following bearing force-displacement model:

+-/_+E'xx (Z)

where (X,Y,X,_,_,_ are the rotor displacements, velocities and accelerations. (F_,Fy) are
the fluid film forces acting on the rotor, and (K,C,M) are the stiffness, damping, and

inertia coefficients of the fluid film, respectively.

For bearings with a large length to diameter ratio a more extensive force-
displacement model may be required which takes into consideration angular rotation

of the shaft. This force/moment-displacement/rotation model is expressed in the

following form:
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1.2 TRANSFER FUNCTION MEASUREMENT

The aforementioned force-displacement models of Equations 1 and 2 are linear

models. The term linear refers to the inherent assumption that the force coefficients

K,C, and M are not frequency dependent. It is not good practice to assume the

characteristics of data ahead of time. In some cases, such as gas hydrostatic
bearings and magnetic bearings, analysis will indicate ahead of time that the linear

model may not apply. Therefore, the actual measurement objective for dynamic

testing of bearings (and also seals) is the transfer function. Equation 1 can be
rewritten in terms of the complex transfer function as follows:

(3)

where (for the linear model of Equation 1)

Hw=Kq-,o2M +E,oC,j

Once obtained from test data, the transfer functions will determine whether or not the

linear model applies. If the linear model does apply, the K,C,M coefficients can be

obtained using linear and polynomial curve fits of the transfer function data. If the

linear model does not apply, the transfer function information is used in the

rotordynamic analysis in place of stiffness, damping, and mass coefficients. An

example set of transfer functions for fluid film bearing testing is shown in Figure 1-1.

A similar expression can be developed for the more complicated model of Equation 2.

1.3 TEST APPARATUS FLEXIBILITY

When developing a test apparatus for fundamental research it is important to

make the apparatus as flexible as possible. The test results, and not test rig design,

must determine what characteristics are important. The evolution of bearing and seal
testing for rotordynamic coefficients has demonstrated that limitations in test rig

design because of preconceived notions about the relative importance of certain

characteristics has rendered useless (or suspect) much of the available data.
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This point can be illustrated by examining the development of annular seal test
rigs. NASA MSFC funded the development of a test apparatus at Texas A&M

University for the measurement of rotordynamic coefficients of annular seals in Halon.

This test program lasted approximately 6 years and was thought to be successful at

the time. However, the test apparatus design was too limited in scope because the

conventional knowledge at the time was that hydrodynamic bearing theory and test
approaches would suffice. Therefore, no accommodations were made for inlet

circumferential velocity control or separation of the rotordynamic coefficients.

Unfortunately, both have been shown to be necessary for understanding the

rotordynamic coefficients of annular seals. Although the data is useful for a

qualitative assessment of the relative performance of different seal geometries, it is

not useful for validation of computer codes or design of new components.

Now, we are faced with a similar situation with respect to moment coefficients

and tilt. Fortunately, several other researchers have investigated these effects and

found that in some cases the influence is substantial. However, it is not possible to

extend the findings for a limited sample of test articles to a broad class of yet to be

investigated bearing technologies. Therefore, it is imperative to develop a test

apparatus with moment coefficients and tilt in mind. The apparatus must either

measure all parameters necessary to determine the characteristics or be designed such
that all parameters related to tilt and moment coefficients are controlled to the point

of being insignificant. With this in mind, the focus of this study will be on test

apparatuses which have the test article located between the slave bearings. As the
discussion will point out, overhung test apparatuses are subject to excessive tilt and

moment effects which can not be eliminated through design.

1-4



2.0 SYSTEM CONSIDERATIONS

The test measurement system includes many components both within and
external to the apparatus. Due to the difficulty of the task at hand, all components
must be designed and/or selected for optimum performance to achieve acceptable
experimental uncertainties. It is fair to say that the measurement system is like a
chain, and is only as strong as its weakest link. This section briefly discusses the
links that form the chain, and some of the primary factors that go into each.

2.1 TESTER CONCEPTUAL DESIGN

Selection of a basic tester concept is probably the most important decision in

the conceptual design phase of an apparatus for rotordynamic coefficient testing. To
a very large extent this determines, among other things, tester functionality, cost,

suitability, ease of use, and overall uncertainty in the experimental result. A variety

of alternative tester concepts can be found in the open literature as both basic and

applied research of this type has taken place in the U.S. and around the world (see

APPENDIX 1). A thorough discussion of each application is beyond the scope of this

effort. There are different ways to classify testers. Some of these are:

test article location

overhung

centrally mounted
dynamic excitation source

shaker, independently controlled

electrodynamic
hydraulic

magnetic
mechanical (i.e., ball vibrolator)

synchronous unbalance or eccentricity

asynchronous unbalance or eccentricity

impulse hammer

step input (eg., strap)
point of application of dynamic excitation

test article housing

directly on shaft

indirectly on shaft through a bearing

support bearing

auxiliary (non-support) bearing
load measurement scheme

reaction force within test article stator

dynamic model matching from response only

simple - rigid test article housing
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complex - flexible test shaft
force input measurement (usually involves some model matching,

minimal to extensive)
film pressure integration

test article support

fixed housing

floating housing
type of test article

rolling element bearing

fluid film bearing

magnetic bearing
seal

test conditions

low/high test shaft rotational speed

low/high test frequency range

cryogenic/ambient/high temperatures or multiple

low/high feed flow rates
low/high pressures (inlets, deltas, films, etc.)

presence of thrust reaction
linear/nonlinear conditions

deadband clearances

large displacements
cavitation

structural

transient/steady state

condition matching (do speeds, loads, pressures, temperatures,

etc., match or scale with the target application)

This is just a sampling of some of the factors that differentiate the many
approaches to rotordynamic coefficient testing. There are numerous interrelated pros

and cons for each. Another basic consideration is the overall goal of the test

program. The primary goal may be tester accuracy. Or perhaps versatility is

paramount such that accuracy is compromised so that test articles can be more easily

interchanged. Cost is always a factor, and whether it is realized or not, budget

constraints can and do affect the accuracy of the experimental result. More often
than not the number one trade off is between accuracy and everything else. Only

through a thorough understanding of all facets of rotordynamics and test methods can

meaningful accuracy be attained while adhering to the constraints of the test program.
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2.2 TRANSDUCER SELECTION, INSTALLATION AND CALIBRATION

Ideally transducer selection should be an integral part of tester conceptual

design. For example, standard series Bently Nevada proximeter probes are often used

to measure shaft motion. For many tester applications that motion is on the order of

several hundred microinches, or less. Due consideration need be given to the fact that

such probes are generally considered to have a resolution of roughly 50 microinches.

Thus, 200 microinches can only be measured accurately with a 50 microinch device

if it is calibrated and applied correctly. Experience has shown that the use of higher

gain proximeters can, and does, greatly enhance resolution. But the corresponding

reduction in useful transducer measurement range can make it very difficult, if not

impossible, to obtain useful readings. Installation of displacement probes should

always be done a quad fashion (4 per plane). For static measurements this allows the

cancellation of thermal drift, and centrifugal/thermal/pressure growth. For dynamic

testing it reduces random measurement errors. Proximeter probe calibration should

always be performed at the temperature and pressure to which their subjected. Also,

calibrations should be dynamic, not just static, since gain and phase lag in eddy

current probes have been measured by the authors to be frequency dependent to a
considerable extent.

Accelerometers also are usually a critical part of the test measurement system.

Their selection is usually a trade off on size, sensitivity, and range. Proper attention

to their installation is also important, especially in high flow fluid bearing testers.

Since flow turbulence beyond the test frequency measurement range can cause full

or partial saturation of the accelerometer electronics. Like displacement proximeters,

accelerometers should be mounted in redundant arrays to reduce random

measurement errors. Accelerometer calibrations are generally performed only for

amplitude sensitivity. For rotordynamic coefficient measurements, it is imperative that

they also be phase calibrated.

For many tester concepts dynamic loads are measured with load cells.

Piezoelectric load cells potentially offer greatly enhanced accuracy and range over
other types of sensors. Like proximeter probes, load cells generally are calibrated only

for load sensitivity. For this application calibrations need to be for sensitivity and

phase, both as functions of frequency. Their installation requires tight machining

tolerances on the mating parts which they contact. Also, their installation needs to

be assessed from the standpoint of incremental Ioadings brought on by thermal and

pressure effects at test conditions. For cryogenic applications, the installation and
location of piezoelectric load cells must be done carefully. Dynamic testing of

piezoelectric load cells by the authors in both liquid helium and liquid nitrogen showed

that the crystal would delaminate or crack under low cycle load conditions.
Piezoelectric load cells must be preloaded accurately and maintain a known preload

during operation. Therefore, piezoelectric load cells must be insulated from the

cryogenic test fluid to avoid changes in preload during operation and possible failure.
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2.3 TEST PROCEDURE

The test procedure is generally a direct consequence of the tester concept being

used, and the mode of operation of the facility. The effect on experimental
uncertainty comes about from the direct influence on what kind of data, and how

much, is acquired for a given test article operating condition. Tester design largely

determines what kind of data can be acquired, and this is a major factor in
establishing potential bias errors which cannot be "corrected" or "calibrated" out.

The "quantity" of data that can be obtained for any single test condition directly
influences random errors in the experimental result. Test time made available at any

given test condition is strongly influenced by the type of facility (continuous closed

loop vs blow down). Cost is also an obvious factor. Repeating a test, or simply
running it for a longer length of time, increases confidence and lowers random errors

(practically the same thing).

2.4 CABLING AND SIGNAL CONDITIONING

Transducer cabling and signal conditioning equipment are often not considered

for their effect on experimental uncertainty. Normally, cabling is not a factor as long

the usual precautions are taken to prevent tribological effects in the case of capacitive

transducers, and good connections are always verified. Signal conditioning equipment
like amplifiers and filters should be treated like any high frequency transducer. They

should be calibrated for their amplitude and phase characteristics as functions of
frequency.

2.5 DATA ACQUISITION

In modern day test labs, data is acquired with computer systems using high
speed analog to digital converters. This avoids the use of FM tape recorders which

potentially can introduce large errors in rotordynamic coefficients. The data
acquisition system is one of the most important "links" in the overall chain of the test

system. It must be accurate, it must have adequate precision, and these must be

verified by thorough calibration. A computerized data acquisition system is mostly
just a fast digital volt meter with multi-channel and self storage capability. But in

addition to that it has integral parts such as a high speed clock and bank of analog

filters. Calibration of the acquisition system should verify the high frequency

characteristics of both gain and phase for the complete system.

Quite often, the calibration of the whole multi-channel instrumentation system,

except the transducers themselves, can be done at one time. This is accomplished
by passing an appropriate broadband calibration signal simultaneously through all

cabling and signal conditioning equipment, and recording the signal with all channels
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of the acquisition system. This "measurement" provides the means to calibrate the

complete system for amplitude and phase across the entire test frequency range.

2.6 DATA PROCESSING AND REDUCTION

In rotordynamic coefficient testing the data processing phase is the final step

to obtaining the desired experimental result. That is to essentially calculate the

rotordynamic coefficients from a multitude of data channels. In addition to simply

producing measured estimates of the rotordynamic coefficients, the calculation
method should suppress the effects of noise and minimize uncertainties. It is often

overlooked that the calculation method itself has the potential to either magnify or
reduce experimental uncertainties, and this applies to both bias and random errors in

the rotordynamic coefficients.

To make the most of this opportunity to reduce errors requires a thorough
knowledge of digital signal analysis techniques and methods. For example, there are

multiple ways to compute the stiffness from a pair of load and deflection

measurements. Under ideal circumstances it rarely matters which method is used.

When test conditions are less than ideal, such as in the presence of significant

instrumentation noise or other types of noise, there are methods which are specifically

optimized to reduce, of not eliminate, the effect of various types of noise.
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3.0 CANDIDATE DESIGNS

Numerous tester designs for measuring rotordynamic coefficients have been

published in the open literature. Nearly all such testers fall into one of two broad

categories: overhung or centrally mounted. This refers to the location of the test

article (seal, bearing or impeller) with respect to the support bearings (also called slave

bearings). A vast majority of the testers in existence are of the centrally mounted
variety. This is a natural consequence of the pros and cons that apply to each

concept. Without attempting a complete treatise on the subject, the following table

suggests some of the more significant pros and cons:

Tester Concept Type

Centrally Mounted Overhung

PROS • immune to shaft tilt • Easy to change test articles
• slave bearings loaded leas than test article

CONS • interchanging test articles can be time consuming • Subject to errors associated with shaft tilt

• Slave bearing(s) loaded more than test article

3.1 CONSIDERATIONS ABOUT OVERHUNG TESTERS

An example overhung test apparatus is shown in Figure 3-1. One of the points

brought out in the table is that tilt of the test shaft has a detrimental affect. For test

articles having an axial length as much or more than the shaft diameter, moments

produced by tilt of the shaft can be significant. If measurement of moment

coefficients is beyond the scope of the test program, it is important to minimize their
potential effect. The only sure way to accomplish this is to preclude the presence of

tilt of the test shaft at the test article location. This is best done by positioning the

test article midway between two slave bearings. Overhung test articles, on the other

hand, are particularly prone to the effect of shaft tilt. This effect, should it occur, can

have serious consequences when trying anchor analytical models to test data

unknowingly influenced by the presence of fluid film moments produced by tilt.

Another point brought out in the table is the loading to which the slave bearings
will be subjected. When testing bearing concepts for advanced turbopump designs,

the high operating DN's and large working loads can be beyond the capability of

mechanical bearings. This usually suggests the use of fluid film bearings. Testing

such a bearing will require rather large flow rates of working fluid at extremely high

pressure. This creates a problem for slave bearing design because there may not be

enough high pressure flow capacity to supply two fluid film slave bearings and a test
bearing. So the natural slave bearing choice would seem to be ball bearings, except

that the speed and load conditions are so severe. One thing that can be done is to

minimize the loads to which the slave bearings are subjected. The centrally mounted

tester concept accomplishes this by sharing the test bearing load bewteen two slave
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bearings. In an overhung tester the near slave bearing actually experiences more load
than the test bearing.

The last point brought in the table is the aspect of test article interchangeability.

The primary advantage of the overhung concept is the relative ease with which the

test article can be removed and replaced. For the centrally mounted concept utilizing

rolling element bearings, removing the test article either requires horizontally split

bearing housings, or removal of one slave bearing pedestal. If magnetic or fluid film

bearings are used with the centrally mounted concept, the shaft can be easily
removed for access to the test article.

3.2 SLAVE BEARING CONSIDERATIONS

The type and characteristics of slave bearings has a profound influence on the

development of not only the test apparatus, but the entire facility. The overall
accuracy and quality of the test results obtained from the test apparatus are heavily

dependent on the dynamic characteristics of the rotor-bearing-test article system. If

at all possible, the slave bearing rotordynamic characteristics should remain constant
for all test conditions. For cryogenic testing, this is a very difficult requirement to
meet.

Fluid film bearing rotordynamic characteristics are very clearance and fluid

viscosity dependent. It is nearly impossible to design a fluid film bearing which will

have the same or similar rotordynamic characteristics for operation at room

temperature, LOX temperature, and LH2 temperature. If fluid film slave bearings are

preferred, different geometries will have to be designed and fabricated for each

temperature and fluid condition. Otherwise, the different dynamic and load

characteristics will have to be accounted for by changing the test method and data

reduction procedure for each test condition. The facility requirements for fluid film

slave bearings are as extensive as for the test article and will severely limit test time

in a blow down facility.

Rolling element bearing rotordynamic characteristics are less sensitive to test
fluid properties than fluid film bearings. However, they are sensitive to changes in

bearing deadbando It may be possible to arrive at 2 rolling element bearing designs

which will suffice; one for cryogenic and one for room temperature. Considering the

range of test fluids and temperatures that this test apparatus must accommodate, the

rolling element bearing is preferred over the fluid film bearing. Also, the facility

requirements for rolling element bearings are much less than for fluid film bearings.

Magnetic bearings offer the greatest flexibility for this type of test apparatus.

They are relatively insensitive to speed and temperature changes and can provide the

same dynamic characteristics for all test conditions. In fact, the magnetic bearing can
function as the exciter, eliminating the need for shakers. Magnetic bearings also
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provide the simplest means for measuring the effects of tilt and moment coefficients.

The facility requirements for magnetic bearings are minimal.

3.3 CANDIDATE DESIGNS FOR EVALUATION

The previous discussion has shown that apparatuses with overhung test articles
have many deficiencies which limit their usefulness and quality of data. By

comparison, apparatuses with centrally mounted test articles are more likely to

produce accurate data. Furthermore, fluid film slave bearings may be too sensitive to

thermal conditions and fluid properties to function reliably over the entire range of
expected tester conditions. Based on these arguments, further discussion and

analysis will be limited to apparatuses with centrally mounted test articles utilizing
rolling element or magnetic slave bearings. The four candidate configurations are:

1

2

3

4

Floating Housing Rig With Magnetic Bearing Exciter/Support

Fixed Housing Rig With Magnetic Bearing Exciter/Support

Floating Housing Rig With Shakers
Fixed Housing Rig With Shakers

3.3.1 Floating Housing Rig With Magnetic Bearing Exciter/Support. A concept sketch

of this rig is shown in Figure 3-2. The stator or housing of the test article is

supported only by the fluid film bearing to be tested (the test article). The stator is

held parallel to the initial shaft centerline by tilt control wires that have a negligible

lateral stiffness. Magnetic bearings are used as both slave bearings and an excitation

source. The excitation force is input to the shaft at the slave bearings and the

reaction force is measured by measuring the acceleration of the floating housing. This

approach eliminates thermal difficulties associated with load cells in a cryogenic
tester. A static load can be applied through a cable attached directly to the floating

housing. The static load is supplied by a pneumatic cylinder through an isolation
spring to the cable. The tilt control wires can also be used to add intentional tilt to

the housing to determine the effect of static tilt on the transfer function to be
measured.

While this tester concept may eliminate most or all of the thermal constraints

of load measurement, it falls short in its ability to control the dynamic motion at the
test article. For this concept to be successful, multiple arrays of accelerometers must

be placed carefully on the test article and sophisticated calibration and data reduction

techniques developed. This design will not be able to generate data for the
determination of moment coefficients.
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3.3.2 Fixed Housing Rig With Magnetic Bearinq Exciter/Support. This rig, shown in

Figure 3-3, is similar to the floating housing rig (1) except that the test article stator
is firmly supported by a pedestal. A thermally resistant material is used to isolate a
load cell table in the pedestal used to measure test article load. Accelerometers are

used to correct for stator inertia force. The excitation force is applied directly to the

shaft at the slave bearings. A static load can be applied using the magnetic bearings

or by moving the tester support. Using two independently adjustable, symmetrically
mounted magnetic bearings makes it possible to prevent dynamic tilt (a common

problem with fixed housing test rigs). This tester works best with a stiff shaft.

This concept attempts to address every major issues facing the development
of a new cryogenic bearing test apparatus. The magnetic slave bearings provide

temperature independent support and excitation, the load cell table is thermally
isolated, the magnetic bearings are capable of exciting the shaft in every conceivable

manner, and test article access is simplified by removing the shaft. The combination

of the load cell table and magnetic bearing excitation at the slave bearings will enable
the determination of all force and moment coefficients.

3.3.3 Floating Housing Rig With Shakers. This type of rig is the most common for

measuring rotordynamic coefficients for fluid film bearings. A somewhat standard

design has evolved over the past several years as researchers have perfected the test

technique for journal bearings. A concept sketch of this type of tester is shown in

Figure 3-4. The excitation force is applied to the floating stator through a load cell.

Stator mounted accelerometers are used to correct for stator inertia. Although a
calibrated hammer can be used as the excitation source, hydraulic shakers are more

common due to the flexibility they provide in controlling the spectral content of the

input signal. As with tester (1), the static load can be applied through a cable
attached to the floating housing, and tilt control wires can be used to hold the housing

parallel to the initial shaft centerline or provide intentional static tilt.

The major concerns about this type of tester design are tilt/moment control and

isolation of the load cell in the cryogenic environment. The load cell is mounted on
a stinger between the shaker head and the test article. For extreme environments,

design difficulties may occur when trying to keep the load cell and shaker head at a

safe temperature while limiting the dynamic and mass characteristics of the stinger

and related insulation. This design will not be able to generate data for the
determination of moment coefficients.
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3.3.4 Fixed Housin.q Rig With Shakers. Figure 3-5 is a concept sketch of the floating
housing rig of Figure 3-4 modified to utilize a fixed test article. In this type of tester,

the excitation force is applied directly to the shaft through a shaft riding ball bearing.
Load cells supporting the stator measure the reacted load. Accelerometers are used

to correct for stator inertia force, but this correction is much less significant than with
a floating housing tester. Again, either a hammer or shaker can be used as the

excitation source. A static load can be applied directly to the shaft but is more

conveniently applied by moving the tester support. A difficulty with this technique

is that it is more difficult to adjust the load. It is also difficult to apply the dynamic
load without causing tilt between the rotor and stator, unless two additional shakers

are used. This type of tester requires a softer shaft than the other techniques.

This design allows the load cells to be thermally isolated, but it does not allow

either tilt or moments to be controlled effectively. In addition, test article change out

is more difficult with this arrangement.
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4.0 EVALUATION OF CANDIDATE DESIGNS

Frequency response and uncertainty analyses were performed for the two
magnetic bearing supported testers to determine how they should be applied. The

results of a previous analysis of the two shaker excited testers for a NASA funded

SBIR (Imlach and Hawkins, 1992) were reviewed also. A finite element model was

built for each tester concept. Using these models, linear frequency response analyses

were performed using standard rotordynamics analysis techniques modified to account

for certain special characteristics of magnetic bearings such as sensor noncollocation.

Tester designs utilizing magnetic bearings were analyzed specifically for this

project. Designs utilizing rolling element bearings were originally analyzed by RSR for

a NASA funded SBIR. Results from this previous analysis are review and discussed.

4.1 FREQUENCY RESPONSE ANALYSIS

The frequency response analysis was performed for a constant rotor speed of

9,600 rpm and a flat input force spectrum of 100 lb. In the analysis of the two
magnetic bearing supported testers, 50 Ib is applied at each magnetic bearing. In the

floating housing tester of Figure 3-2, 100 Ib is applied at the test article casing. In the

fixed housing tester of Figure 3-3, 100 Ib is applied directly to the shaft 3.0 inches
from the test article center.

The frequency response analysis was performed for three reasons: 1) to
determine the general frequency response characteristics of each test method, 2) to

provide the necessary input for an uncertainty analysis, and 3) to determine the

required input force levels and measurement resolution requirements. The results

provide a basis for comparing and evaluating the relative merits of the test

approaches.

4.1.1 Magnetic Bearing Supported/Excited Testers

The analyses for testers (1) and (2) were performed for the following
conditions:

Test Article Stiffness:

Test Article Damping:

Test Bearing Journal Diameter:

Magnetic Bearing Stiffness:

200,000 Ib/in and 1,000,000 Ib/in

100 Ib-s/in
2.0 in and 6.0 in

low and high

The two magnetic bearing transfer functions are shown in Figures 4-1 and 4-2

in terms of equivalent stiffness and damping coefficients. The larger test article

diameter causes two significant differences in the analysis presented here: 1 ) higher
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test article stator mass - 168 Ib compared to 25 Ib, an effect that tends to drive the

rotor natural frequencies lower, and 2) a stiffer rotor which tends to increase the rotor

natural frequencies.

4.1.1.1 Floating Housinq (1). Frequency response analysis results with the floating
housing are shown in Figures 4-3-4-12. Figure 4-3 shows the relative rotor/stator

response at the shaft center for a 2 inch test article journal diameter, 200,000 Ib/in

test article stiffness and the stiff magnetic bearing transfer function. The two

response peaks are due to the first and second mode of the tester. The response is

near zero at low excitation frequency because the input is through the slave bearings.
In order to get relative motion across the test article, the excitation frequency has to

be high enough to excite one of the modes of the shaft/test article. The response at

high frequency becomes small due to the wide separation in the second and third

natural frequencies of the system. The response magnitude is above the minimum

threshold of 0.00005 inches from about 100 Hz to 900 Hz. This range could be

extended somewhat with an increase in input force. Figures 4-4 and 4-5 show test

article acceleration and test bearing load as a function of excitation frequency for this

case. The response levels are within acceptable limits from about 100 Hz to 900 Hz.

Figures 4-6-4-8 show relative rotor/stator displacement for three additional

cases - Figure 4-6 is for a soft magnetic bearing transfer function, Figure 4-7 is a stiff
magnetic bearing transfer function and 1,000,000 Ib/in test article stiffness, and

Figure 4-8 is for a soft magnetic bearing transfer function and 1,000,000 Ib/in test
article stiffness.

The characteristics illustrated in Figures 4-3-4-8 show the major problem with

floating housing testers. The response at the test article is completely dependent on

test article natural frequencies which may change dramatically depending on the type

of bearing tested and the fluid medium used for the test. A flat response spectrum

is desired in order to produce the lowest uncertainties and to reduce any amplitude

nonlinearity effects. A much flatter response spectrum can be produced by spectrally

shaping the input force spectrum. This can easily be done with either magnetic
bearing or hydraulic shaker excitation. However, in either case, the response at null

frequencies, such as the low frequency region of Figure 4-3, can not be increased
significantly with a practical force input magnitude. Large changes in system dynamic

characteristics may require a flexible and extensive data reduction software package

which may need to be customized for each test series. Situations may also occur

where the response at the test article is below measurement capability over the

frequency range of interest (typically 0-1kHz).
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Figures 4-9-4-12 show relative rotor/stator displacement for four additional
cases that were analyzed with a 6 inch test article journal diameter. Figures 4-9-4-12
correspond directly to Figures 4-3 and 4-6-4-8 for the 2 inch test article. By
comparison of the figures, the higher test article mass reduced the natural frequency
of vibration for the responding modes of the tester. As a consequence, three vibration
modes are in the frequency range of interest with the larger bearings. Of course, the
larger bearings will actually be tested at much higher stiffness values than the smaller
2 inch bearing, partially negating this effect.

4.1.1.2 Fixed Housinq (2). Frequency response analysis results with the fixed housing
are shown in Figures 4-13-4-22. Figure 4-13 shows the relative rotor/stator response

at the shaft center for a 2 inch test article journal diameter, 200,000 Ib/in test article

stiffness and the stiff magnetic bearing transfer function. The one response peak is

due to the second mode of the tester as the first mode is well damped by the

analyzed test article damping. Bearings having less net damping (significant cross-

coupled stiffness or less direct damping) would have a first mode response. A

significant difference between this configuration and the floating housing configuration

is that there are no null points in the frequency range of interest. The relative
response levels are similar for the similar force input. Figures 4-14 and 4-15 show

test article acceleration and test bearing load as a function of excitation frequency for

this case. Note that the acceleration is several orders of magnitude below the levels

predicted for the floating housing tester. This is because of the very high natural

frequency (2-4kHz) of the test article support relative to the frequency range of
interest (0-1 kHz), and indicates that the acceleration measurement will be much less

important with the fixed housing tester. The response levels are such that spectral
shaping of the input could be used to produce an acceptably flat response over the
entire frequency range of interest.

Figures 4-16-4-18 show relative rotor/stator displacement for three additional

cases; Figure 4-16 is for a soft magnetic bearing transfer function, Figure 4-13 is a
stiff magnetic bearing transfer function and 1,000,000 Ib/in test article stiffness, and

Figure 4-18 is for a soft magnetic bearing transfer function and 1,000,000 Ib/in test

article stiffness. The differences in response among these three cases and Figure 4-
13 are due to the differences in the locations and damping levels of the rotor natural

frequencies due to the different support stiffness values. In each case flat,

measurable response spectrums should be possible with reasonable input force and
spectral shaping.

Figures 4-19-4-22 show relative rotor/stator displacement for four additional

cases that were analyzed with a 6 inch test article journal diameter. The larger test
article diameter results in the same two differences stated before: 1) higher test

article stator mass - 168 Ib compared to 25 Ib, an effect which is not as important
with the fixed housing tester, and 2) a stiffer rotor which tends to increase the rotor
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